Homeostasis and Exercise - Mark Scheme | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---------------------|------| | 1(a) | 1. idea that (some) have less myoglobin present ; | | | | | 2. less blood / fewer red blood cells / less haemoglobin ; | | | | | 3. as fewer capillaries present / eq; | | | | | 4. idea that respiration is (mainly) anaerobic; | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---------------------|-------------------------------------|------| | 1 (b)(i) | | ACCEPT we foodbook historyles | | | | negative feedback ; | ACCEPT -ve feedback, biofeedback is | | | | | negative | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | *1(b)(ii) | (QWC – spelling of technical terms must be correct and the answer must be organised in a logical sequence) | QWC emphasis is spelling | | | | idea that low pH is due to acid in the blood; lactate taken to liver / eq; | ACCEPT <i>lactic</i> acid for <i>lactate</i> throughout and <i>pyruvic</i> acid for <i>pyruvate</i> 1. Accept for acid: <i>lactic</i> acid/lactate/(dissolved) CO ₂ | | | | 3. reference to oxygen debt / EPOC; | | | | | 4. used to convert <i>lactate</i> back to <i>pyruvate</i> ; | | | | | 5. with production of <i>reduced</i> NAD / eq ; | 5. ACCEPT NADH ₂ and NADH + H ⁺ | | | | 6. { lactate / pyruvate} converted to glucose / glycogen ; | 3. ACCLI I NADII ₂ and NADII + II | | | | 7. pyruvate into mitochondria ; | 7. ACCEPT <i>lactate, matrix</i> as | | | | 8. idea of <i>chemoreceptors</i> detecting change in pH; | equivalent to mitochondria | | | | 9. idea of response e.g. increased { nerve impulse rate from medulla / breathing rate / heart rate}; | | | | | 10.(dissolved) CO ₂ from blood (<i>diffuses</i>) into <i>alveoli</i> / eq ; | | | | | | | | | | | | | | | | | (5) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | 1(b)(iii) | reference to arterioles; muscles contracting to restrict diameter / eq (in | IGNORE ref to relaxation of hair erector muscles | | | | shunts); | 2. ACCEPT vasoconstriction | | | | muscles relaxing to increase diameter / eq (of arterioles); | 3. ACCEPT muscles relax to dilate arteriole ; | | | | to redirect blood {away from deeper arterioles / into
surface arterioles} / eq; | ACCEPT vasodilation ACCEPT shunt vessels | | | | to increase blood flow { into capillaries / towards
surface } / eq; | | | | | 6. (so more heat lost) through radiation; | 5. More blood enters = to increase blood flow | | | | | | | | | | | (4) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--------------------------------------|------| | 2 (b) | An answer that makes reference to the following: | ALLOW converse for any marking point | | | | (an increase in body temperature causes) a greater increase in rate of sweating in males than in females (1) | ALLOW 'males sweat more' | | | | males lose heat faster because they produce sweat at a faster rate (1) | | | | | females have larger SA to body mass ratio that allows
for { faster / more effective } heat loss (1) | ALLOW SA: volume | | | | males have less { body fat / insulation } which may
allow { faster / more effective } heat loss (1) | | (4) |